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The present project aims at applying and further develing techniques
of stochastic analysis in relation with the study of quantum systems, both
in the finite and in the infinite dimensional case. The project constists of
two parts: the first part concentrates on problems of quantum fields and
associated stochastic partial differential equations (SPDEs) and variational
problems. Particular attention is given to extend methods already developed
for scalar quantum fields to the case of Fermionic quantum fields, using in
particular a Grassmanian algebraic setting. Analytic methods of Dirichlet
type operators and Hamiltonian methods will play an important role, ex-
tended to the non commutative setting. Also functional analytic methods
going back to fundamental work of Nelson, developed in connection with his
view of the role of probabilistic methods for quantum theory and quantum
fields. The second part of the project aims at developing related probabilistic
ideas and methods for the study of nonlinear PDEs, like the Gross-Pitaevskii
equation, arising in the study of a scaling limit of certain coupled quantum
mechanical N particle systems, in the large N limit. The probabilistic meth-
ods are inspired by Nelson’s stochastic mechanics, as in the first part of the
project. New variational principles will also play an important role in both
parts of the project ([62]).
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1 Interacting Bosons and Fermions: stochas-

tic PDEs and variational problems

Probabilistic methods in quantum field theory (QFT) have proved to be
particularly fruitful (cf. e.g. [18, 23, 37]). These methods have been almost
exclusively restricted to Bosonic field theories. Some ideas of the Bosonic
probabilistic methods carry over, to an extent, to the Fermionic case using
the beautiful algebraic technique of Berezin integration [6]. This extension
in conjunction with renormalization group techniques was successfully used
to build some quantum field models involving interacting Fermions (see, e.g.,
[29] and references therein, [30],[31]).

More recently, in [1] (see also [10]), a framework, closer to the proba-
bilistic approach used for Bosonic fields, was presented to describe Fermionic
systems. This framework offers a new language to reformulate the ideas of
Berezin in a more probabilistic and C∗-algebraic flavor. We think this frame-
work to be very natural and to adapt the methods and ideas of quantization
of Bosonic fields to the case of quantum systems involving Fermions (in par-
ticular the ideas of stochastic quantization introduced by Parisi-Wu [35] and
recently applied to many cases thanks to the methods of singular stochastic
partial differential equations (SPDEs) (see, e.g., [?], [9, 19, 22, 24])).

We aim to extend and apply the cited framework to the construction of
interacting Fermionic quantum field theories in at least three directions.
The first is the generalization to the Fermionic case of the variational methods
for (Bosonic) quantum field theory introduced by E. Nelson in finite dimen-
sion (see, e.g., [32, 33] and the references cited in the first part) and applied
to infinite dimensional quantum fields in, e.g., [3, 4]. Starting from the re-
sults in [10] where a formulation using backward-forward anti-commutative
SDEs is used, we would like to give a complete variational formulation of
Euclidean Fermionic fields and apply it to critical models.
The second direction consists in applying the mentioned probabilistic method
in the construction of the Hamiltonian of Fermionic fields on the space gen-
erated by the Fermionic fields at time zero. In this way the unitary time
evolution of the regularized Fermionic models on the Fermionic Fock space,
over Minkowski space-time, can be converted to a stochastic evolution (in the
sense of [1]) in the Euclidean space-time. After removal of the regularization
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this would constitute an improvement upon the previous results in [34, 13].
This treatment of operators in the Minkowski space time is also closely re-
lated to recent works [21, 20] in the context of SPDEs. As an application,
we intend to reformulate within this language the fundamental work [17] re-
garding the Hamiltonian approach to the construction of the Yukawa2 model.
More generally, our goal is to employ the mentioned techniques to study sys-
tems of interacting Bosons and Fermions (see, e.g., [7, 26] and references
in [1]).
The third application is in the direction of non-relativistic systems. Indeed,
while this framework can be formulated ab initio in an abstract way, at its
core, it is in close relation with the classical framework of quantum fields de-
veloped in theoretical and mathematical physics. Hence we can easily make
use of powerful ideas coming from these disciplines, ideas which have deep
physical and mathematical meaning. In particular we have in mind some
methods and results within the context of the study of many body systems
and multiscale analysis. In the case of many body systems, we would like to
mention in particular the works [12, 28, 27]. Regarding multiscale analysis
and in particular the renormalization group, we would like to mention the
already cited [26] and also [11, 15, 16, 24]. We also plan to take advantage
of results regarding current algebras and the implementability of Bogoli-
ubov transformations (cf. e.g. [8]), and results regarding Schwinger terms
and anomalies (regarding Schwinger terms cf. [14, 25], regarding anomalies
cf. [5, 36]). These properties have a structural nature which should appear
naturally within our framework, and so get a new interpretation.

2 Stochastic description of Bose-Einstein Con-

densation and the Gross-Pitaevskii model:

new developments.

Bose-Einstein Condensation (BEC) is a purely quantum phenomenon, pre-
dicted by Einstein in 1925 at theoretical and mathematical level, on the
basis of the article by the Indian physicist S.N. Bose [38], in the form of
the occurrence of a transition phase in a gas of non-interacting atoms. The
experimental realization, provided only in 1995 by E.Cornell and C. Wieman
[39], who won, jointly with Wolfgang Ketterle, the Nobel Prize in Physics
2001 ‘’for the achievement of Bose-Einstein condensation in dilute gases of
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alkali atoms, and for early fundamental studies of the properties of the con-
densates”, aroused a great interest in the mathematical description of this
quantum phenomenon and in particular for its rigorous justification start-
ing from first principles, that is from the system of N interacting bosons
and by performing a suitable infinite particles limit. Standard Quantum Me-
chanics uses analytical mathematical techniques to describe this phenomenon
and in particular the motion of the single particle in the BE condensate is
described through a wave function which minimizes a non-linear functional
called Gross-Pitaevskii (GP) functional. A recent physical-mathematical for-
malization of the phenomenon was provided between 2000 and 2002 by Lieb,
Seiringer and Yngvason [40]. It considers charged quantum particles confined
in a bounded region by a magnetic field acting on it. This non-linear one-
particle model was (analytically) justified by Lieb and collaborators (2002)
starting by the N-body Hamiltonian, calculating its ground state energy and
making a limit of infinitely many particles, with an appropriate rescaling of
the interaction potential, known as the GP scaling limit (see [40]). There is
also a large community working on other scaling limits such as the mean-
field scaling limit and intermediate scaling limit, giving rise asymptotically
to the simpler Hartree equation and the non-linear Schroedinger equation,
respectively (see, e.g., [41]). A stochastic approach has been proposed in
2011 ([42]), based on Nelson’s Stochastic Mechanics ([43], see [44] for a more
recent review), in which a one particle stochastic process is rigorously as-
sociated to the N-body Hamiltonian which, within the GP scaling limit,
remains outside a time-dependent interaction region with probability one.
This process is not Markovian but, when appropriately stopped, it converges
in total variation in the GP scaling limit. The proof is based on Girsanov
theorem and a relative entropy approach. In [45] a related result of localiza-
tion of relative entropy in the same GP limit is described. In 2012 Ugolini
establishes the Kac’s chaos (or transition to chaos) for the probability law
of the system of N interacting diffusions associated with the ground state
of the N-body Hamiltonian in the GP scaling limit ([46]). It means that
the interacting diffusions became asymptotically independent in the sense
that for all n the n-particle probability density factorized in the product of n
copies of the same probability density, which is the square of the minimizer
of the GP non-linear functional. Furthermore, in 2015 Albeverio, Ugolini
correctly identify the stochastic process associated with the minimizer of the
(non-linear) functional of GP ([47]). A diffusion generator with a killing
rate governed by the wave function of the condensate was determined. The

4



killing rate, which depends on the probability density of the process itself,
makes the process highly non-linear and represents the probabilistic way of
describing the self-interaction undergone by the diffusion process of the single
particle by the generic other single particle in the condensate. By introduc-
ing a suitable one-particle relative entropy in 2014, De Vecchi and Ugolini
([48]) prove an existence theorem for the probability measure associated with
the GP minimizer. In 2017 Albeverio, De Vecchi and Ugolini ([49]) estab-
lish that the property of entropy chaos holds (a recent concept introduced in
2014 by Carlen et al. in [50]) for the aforementioned system of N interacting
diffusions and they prove the weak convergence of the probability measure of
the one-particle diffusion on the path space. The last is non-trivial problem
due to the fact that although the interaction between the particles is asymp-
totically concentrated in a random region with a zero Lebesgue measure, it
nevertheless does not disappear. The result was obtained using a relevant
property of the sequence of stopping times. This weak convergence result
provides the first probabilistic justification of the mathematical (analytical)
model of Gross-Pitaevskii equation for the Bose-Einstein Condensate. In the
case of the mean-field approach, a stronger type convergence has been ob-
tained which allows us to prove that instead of the usual propagation of chaos,
the strong Kac’s chaos is valid ([51]). Again in the case of the mean field
approach for a confined Bose gas, in [52] the aforementioned convergence
problem is formulated and generalized within a McKean-Vlasov stochastic
optimal control problem framework. All the cited results, both analytic and
probabilistic, has a stationary character. Indeed, since the temperature is
really very low, this first time-independent or ground state approach is phys-
ically justified. Nevertheless, recently there has been a growing interest in a
time-dependent approach to BEC (see, e.g., [53], [54], [55], [56]). We recall
that from the experimental point of view, the Bose-Einstein condensation is
achieved by trapping a boson gas through a strong magnetic field and cool-
ing it to temperatures close to absolute zero, and it is observed that in the
condensate all the gas particles are described by the same wave function for a
particle. One talks about time-dependent Bose-Einstein condensation when,
once the condensation is obtained, the magnetic field cited above is instantly
removed and the evolution over time of the condensate is observed. The goal
of the present research project is twofold and involves both HCM at Bonn
University and University of Pavia. The first research line is to generalize, in
collaboration with Prof. Dr. Sergio Albeverio in Bonn and Dott. Francesco
C. De Vecchi in Pavia, to the time-dependent case the results obtained in the
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stationary setting. A good starting point is to face the convergence in rela-
tive entropy of the involved probability laws. Unlike the stationary case, in
the time-dependent case it is no longer possible to consider the ground state
energies and to study the convergence of quantum energies for the N-body
system to the limit energy associated with the Gross-Pitaevskii nonlinear
functional. Indeed, the mathematical physical approach to time-dependent
problems, due to Bardos et al. ([53], [54]), is no more based on quantum
energies but on finite Schroedinger hierarchies and their convergence prop-
erties. Here the main mathematical objects are the density operator and its
kernel, called the density matrix. Since the N-particle Schroedinger equation
is linear, one can consider only pure states without loosing generality. The
time evolution of the density operator is the Von Neumann equation. Den-
sity operators are trace class operators and one can introduce the marginal
density operator as well as the marginal density matrices. It is notable that
by assuming at the initial time a suitable symmetry property for the den-
sity matrix, due to indistinguishability of Boson particles, the Von Neumann
equation preserves this symmetry property for successive times. The equa-
tion solved by the n-marginal density matrix is called the finite N-particle
Schroedinger hierarchy. Sending N to infinity one can formally obtain an in-
finite Schroedinger hierarchy. By using an estimate on the kinetic energy of
the N-particle system, established for the first time in [54] an important rig-
orous convergence result for the finite N-particle Schroedinger hierarchy was
proved. More precisely, for every fixed time, its solution converges in weak*
topology to a solution of the infinite Schroedinger hierarchy. A second rele-
vant result is the stability of the infinite Schroedinger hierarchy and of the
factorization of the marginal density matrix. The main point of the latter
problem is to prove that if the limit of the N-particle distribution function
is factorized at the initial time then it remains factorized also at all subse-
quent times. An equivalent and elegant formulation of Nelson’s stochastic
mechanics through a stochastic variational principle was provided by Guerra
and Morato ([57]). They obtained a stochastic Hamilton-Jacobi equation,
completely equivalent to the Schroedinger equation, given by two non-linear
PDEs for two variables R and S, related to the real and complex part of
the Schroedinger wave function, respectively. Furthermore, Carlen’s theo-
rem ([58]) to any solution to the Schroedinger equation rigorously associates
a Nelson diffusion process, where the drift is expressed in terms of the two
variables R and S. The equation for R, for example, is the well-known con-
tinuity equation. According to our point of view, the result of convergence
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of density matrices, in particular expressed in terms of integral kernels, will
be fundamental in the proof of the convergence of relative entropy in the
time-dependent case. A second research line of the present project concerns
the identification of an effective and useful stochastic scheme associated to
the Gross-Pitaevskii model of a BE condensate. In collaboration with Sergio
Albeverio ([47]), by performing a Doob ground state transformation of the
N-body Hamiltonian, the infinitesimal generator of the process correspond-
ing to a Nelson diffusion with a density-dependent killing rate was derived.
Our conjecture for this future work is that the process describing the motion
of the single particle in the BE condensate could also be described by a Cox
process with intensity function given by the square of the wave function of
the condensate and driven by the given Nelson diffusion. Cox processes are
very useful generalizations of Poisson point processes in which the intensity is
allowed to be random, but depending continuously on time. This important
class of point processes is well-studied for example in financial applications
and the members of this class have the advantage that they can be easily
numerically simulated. A stochastic description of BEC by means of a Cox
process for a non-interacting gas was provided in [59] (see other references
inside). We aim at generalizing to the interacting case this stochastic scheme
in the GP scaling limit due to the transition to chaos property. The pic-
ture of the above stochastic description could be the following. In previous
papers we proved that the motion of the single particle in a BE condensate
can be useful described by a Nelson diffusion X (usually in three dimen-
sions). Then by considering the random intensity as given by the image of
X through the fixed time probability density of the Nelson process itself,
when we condition on a particular realization of the cited random inten-
sity, the jump process becomes a non-homogenous Poisson process with the
given intensity. We first plan to study all the properties and consequences of
this stochastic description and their consistency with our previous stochastic
structure, for example, by exploiting the Feynman-Kac representation and
the convergence properties of relative entropy. Finally, using probabilistic
techniques on weakly interacting processes, we plan the study of the prop-
erties of large deviations and fluctuations of the one particle process in the
GP scaling limit around the nonlinear limit process. For the corresponding
results in the mathematical physics setting, based on operator theory, see,
e.g, [60] and [61].
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tion. Ann. Inst. H. Poincaré Anal. Non Lin. 36, no. 5, 1201-1235, 2019.

[61] S. Rademacher, B. Schlein. Central limit theorem for Bose-Einstein con-
densates. J. Math. Phys. 60, no. 7, 071902, 2019

[62] S. Albeverio, F.C. De Vecchi, S. Ugolini. Some connections between
stochastic mechanics, optimal control, and non linear Schroedinger
equations. Mathematics Going Forward. Collected mathematical brush-
strokes, eds. J.M. Morel and B. Teissier. Springer Nature 2022.

13


	Interacting Bosons and Fermions: stochastic PDEs and variational problems
	Stochastic description of Bose-Einstein Condensation and the Gross-Pitaevskii model: new developments.

